机器学习笔记(Chapter 10 - K-均值聚类算法)
聚类是一种无监督学习,将相似的对象归到同一个簇中,类似全自动分类,即类别体系也是自动构建的。聚类方法几乎可以应用于所有对性,簇内的对象越相似,聚类效果越好。K-均值聚类算法可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值构成。聚类与分类的区别在于,分类的目标事先已知,而聚类未知。
聚类是一种无监督学习,将相似的对象归到同一个簇中,类似全自动分类,即类别体系也是自动构建的。聚类方法几乎可以应用于所有对性,簇内的对象越相似,聚类效果越好。K-均值聚类算法可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值构成。聚类与分类的区别在于,分类的目标事先已知,而聚类未知。
第8章的线性回归创建的模型需要拟合所有的样本点(除了局部加权线性回归)。当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法就比较困难,并且生活中很多问题是非线性的,无法用全局线性模型来拟合所有数据。一种方法是将数据集递归地切分成很多份易建模的数据,并对可以拟合的小数据集用线性回归建模。
元算法是对其他算法进行组合的一种方式。在做决定时,大家通常考虑吸取多个专家(分类算法)而不是一个专家的意见。当我们试图对样例数目不均衡的数据进行分类时,会遇到非均衡分类问题。
支持向量机(Support Vector Machineds,SVM)是一个二类问题的分类器,实现方法多样,这里采用了序列最小优化(SMO)实现方法,并通过核函数拓展到非线性可分的SVM。
最近在自学数据挖掘和机器学习方面的内容,参考《机器学习实战 - 美Peter Harrington》。整理笔记备忘,所有代码除小部分改动和增加外,都来自附书源码。下面为Chapter1~Chapter4内容。